

Date: November 17, 2010

Time: 13:30

Event Log

Event Type	Industry Name:	American Recyclers (FKA EMRI and Harbor Oil)
□ Phone:		11535 N Force Avenue
□ Meeting	1 1	
☐ Site visit	DE C L' C	(1)
☐ Photographs		acility stormwater. Collected two samples: (1) ne treatment system, and (2) effluent discharging from
X Sampling		m to Force Lake. Samples were collected by Reuben
□ Memorandum	Snyder (myself) ar	nd Marty Anderson.
☐ Other:		

LOG:

- We arrived and made arrangements with on-site personnel to collect samples. It was cool and raining.
- We assessed the sampling locations and determined that all samples can be collected by filling directly into the bottles, no transfer of sampled water was required. pH was measured by collecting water into a pre-cleaned stainless steel beaker. We wore nitrile gloves during the sample collection and practiced clean sampling collection methods. Collected samples were stored in coolers with blue ice and after collection taken directly to the Water Pollution Control Lab for release and analysis.
- We collected the influent sample first at 13:51 from the pipe discharging water into the oil and water separator (See photograph and chain-of custody). We collected the effluent sample at 13:56 from the 1200-COLS compliance sampling location (See photograph and chain-ofcustody).
- We collected photographs of the sample locations (below) and also the actual discharge into Force Lake (not shown).

Figure 1: Influent sample location

Figure 2: Effluent sample location

City of Portland Water Pollution Control Laboratory

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Work Order:

W10K004

Columbia Slough Stormwater Monitoring Client:

Columbia Slough Watershed

Project Mgr: **Aaron Wieting**

Analyte	Result		MRL	Units	Dilution	Batch	Prepared	Analyzed	Method	Qualifie
Total Metals		7505								
Total Mercury by ICPMS			11 11 11 11							
01 : W10K004-01									Sampled: 11/17/10	13:56
Mercury	0.00691	210.	0.00200	ug/L	1	B10K119	11/27/10	11/27/10	WPCLSOP M-10.02	
01 Influent : W10K004-02									Sampled: 11/17/10	13:51
Mercury	0.00893	.012	0.00200	ug/L	1	B10K119	11/27/10	11/27/10	WPCLSOP M-10.02	
Total Metals by ICPMS									WI-10.02	
01: W10K004-01 EFF									Sampled: 11/17/10	13:56
Antimony	0.655	1600	0.100	ug/L	1	B10K028	11/19/10	11/22/10	EPA 200.8	
Arsenic	3.56	NV	0.100	ug/L	1	B10K028	11/19/10	11/22/10	EPA 200.8	
Beryllium	ND		0.100	ug/L	1	B10K028	11/19/10	11/22/10	EPA 200.8	
Cadmium	0.351	.38	0.100	ug/L	1	B10K028	11/19/10	11/22/10	EPA 200.8	
Chromium	3.66	NV	0.400	ug/L	1	B10K028	11/19/10	11/22/10	EPA 200.8	
* Copper	16.1	36	0.200	ug/L	1	B10K028	11/19/10	11/22/10	EPA 200.8	
Lead	6.36	.54	0.100	ug/L	1	B10K028	11/19/10	11/22/10	EPA 200.8	
Nickel	6.30	49	0.200	ug/L	1	B10K028	11/19/10	11/22/10	EPA 200.8	
Selenium	ND		0.500	ug/L	1	B10K028	11/19/10	11/22/10	EPA 200.8	
Silver	0.112	12	0.100	ug/L	1	B10K028	11/19/10	11/22/10	EPA 200.8	
Thallium	ND		0.100	ug/L	1	B10K028	11/19/10	11/22/10	EPA 200.8	
*Zinc	79.6	33	0.500	ug/L	1	B10K028	11/19/10	11/22/10	EPA 200.8	
01 Influent: W10K004-02									Sampled: 11/17/10	13:51
Antimony	2.08	1600	0.100	ug/L	1	B10K028	11/19/10	11/22/10	EPA 200.8	
Arsenic	5.96	NV	0.100	ug/L	1	B10K028	11/19/10	11/22/10	EPA 200.8	
Beryllium	ND		0.100	ug/L	1	B10K028	11/19/10	11/22/10	EPA 200.8	
Cadmium	1.18	1,38	0.100	ug/L	1	B10K028	11/19/10	11/22/10	EPA 200.8	
Chromium	14.1	W	0.400	ug/L	1	B10K028	11/19/10	11/22/10	EPA 200.8	
Copper	62.1	3,6	0.200	ug/L	. 1	B10K028	11/19/10	11/22/10	EPA 200.8	
≯Lead	7.08	254	0.100	ug/L	1	B10K028	11/19/10	11/22/10	EPA 200.8	
Nickel	4.85	-	0.200	ug/L	1	B10K028	11/19/10	11/22/10	EPA 200.8	
Selenium	ND		0.500	ug/L	1	B10K028	11/19/10	11/22/10	EPA 200.8	
Silver	ND		0.100	ug/L	1	B10K028	11/19/10	11/22/10	EPA 200.8	
Thallium	ND		0.100	ug/L	1	B10K028	11/19/10	11/22/10	EPA 200.8	
	104	3,3	0.500	ug/L	1	B10K028	11/19/10	11/22/10	EPA 200.8	

Reported:01/03/11 08:29

Renee Chauvin, Laboratory Coordinator QA/QC

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

City of Portland

Water Pollution Control Laboratory

Project: Work Order:

W10K004

Columbia Slough Stormwater Monitoring Client:

Columbia Slough Watershed

Project Mgr:

Aaron Wieting

Total Metals - Quality Control Report

Analyte	Result	MRL	Units	Spike Level	Source Result	%Rec (Limits)	RPD (Limit)	Prepared: Analyzed	Qualifier
Total Metals by ICPMS - Batch	B10K028	_							
Blank (B10K028-BLK1)				_					
Selenium	ND	0.500	ug/L				-	11/19/10 :11/23/10	
Silver	ND	0.100	ug/L	-				11/19/10 :11/23/10	
Thallium	ND	0.100	ug/L					11/19/10 :11/23/10	
Zinc	ND	0.500	ug/L					11/19/10 :11/23/10	
LCS (B10K028-BS1)									
Antimony	10.22	0.100	ug/L	10.0		102 (85-115)		11/19/10 :11/22/10	
Arsenic	10.21	0.045	ug/L	10.0	**	102 (85-115)		11/19/10 :11/22/10	
Beryllium	10.23	0,100	ug/L	10.0		102 (85-115)		11/19/10 :11/22/10	
Cadmium	10.30	0.100	ug/L	10.0		103 (85-115)		11/19/10 :11/22/10	
Chromium	10.17	0,400	ug/L	10,0		102 (85-115)		11/19/10 :11/22/10	***************************************
Copper	10.55	0.200	ug/L	10.0		105 (85-115)		11/19/10 :11/22/10	
Lead	10.40	0.100	ug/L	10.0	·····	104 (85-115)		11/19/10 :11/22/10	
Nickel	10.10	0.200	ug/L	10.0		101 (85-115)		11/19/10 :11/22/10	
Selenium	61,33	0.500	ug/L	50.0		103 (85-115)		11/19/10 :11/22/10	
Silver	9.726	0.100	ug/L	10.0		97 (85-115)	-	11/19/10 :11/22/10	
Thallium	10.09	0.100	ug/L	10.0	**************************************	101 (85-115)		11/19/10 :11/22/10	
Zinc	50.82	0.500	ug/L	50.0		102 (85-115)		11/19/10 :11/22/10	•
Duplicate (B10K028-DUP1)	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Source: W10	K014-02				777788794 F11 F141 1500		110-11
Antimony	0.1088	0.100	ug/L		0.1082		0.6 (20)	11/19/10 :11/22/10	
Arsenic	0.1319	0.045	ug/L		0.1421		7 (20)	11/19/10 :11/22/10	
Beryllium	ND	0,100	ug/L		ND	M 24	(20)	11/19/10 :11/22/10	
Cadmium	ND	0.100	ug/L		ND		(20)	11/19/10 :11/22/10	
Chromium	0.4989	0,400 .	ug/L	***************************************	0.5048		1 (20)	11/19/10 :11/22/10	····
Copper	2.760	0.200	ug/L		2.795		1 (20)	11/19/10 :11/22/10	*** "
Lead	2.466	0.100	ug/L		2.510		2 (20)	11/19/10 :11/22/10	•
Nickel	0.5541	0.200	ug/L		0.5567		0.5 (20)	11/19/10 :11/22/10	
Selenium	ND	0.500	ug/L		ND		(20)	11/19/10 :11/22/10	
Silver	ND	0.100	ug/L		ND		(20)	11/19/10 :11/22/10	
Thallium .	ND	0,100	ug/L		ND		(20)	11/19/10 :11/22/10	
Zinc	15.22	0.500	ug/L		15.21		0.07 (20)	11/19/10 :11/22/10	
Matrix Spike (B10K028-MS1)		Source: W10	K014-02						
Antimony	10.09	0.100	ug/L	10.0	0.1082	100 (70-130)		11/19/10 :11/22/10	
Arsenic	10.34	0.045	ug/L	10.0	0.1421	102 (70-130)		11/19/10 :11/22/10	
Beryllium	10.08	0,100	ug/L	10.0	ND	101 (70-130)		11/19/10 :11/22/10	
Cadmium	10.03	0.100	ug/L	10.0	ND	100 (70-130)		11/19/10 :11/22/10	

Reported:01/03/11 08:29

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

Renee Chauvin, Laboratory Coordinator QA/QC

December 10, 2010

Analytical Report for Service Request No: K1013068

Jennifer Shackelford Portland, City of 6543 N. Burlington Ave Portland, OR 97203

RE: Columbia Slough Stormwater/W10K004

Dear Jennifer:

Enclosed are the results of the samples submitted to our laboratory on November 19, 2010. For your reference, these analyses have been assigned our service request number K1013068.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3364. You may also contact me via Email at HHolmes@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Project Chemist

HH/dlm

Page 1 of 1Z

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards,
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value that was detected outside the quantitation range.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.

 DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value that was detected outside the quantitation range.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value that was detected outside the quantitation range.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.

 DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualiflers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Program	Number
Alaska DEC UST	UST-040
Arizona DHS	AZ0339
Arkansas - DEQ	88-0637
California DHS	2286
Florida DOH	E87412
Hawaii DOH	-
Idaho DHW	-
Indiana DOH	C-WA-01
Louisiana DEQ	3016
Louisiana DHH	LA050010
Maine DHS	WA0035
Michigan DEQ	9949
Minnesota DOH	053-999-368
Montana DPHHS	CERT0047
Nevada DEP	WA35
New Jersey DEP	WA005
New Mexico ED	-
North Carolina DWQ	605
Oklahoma DEQ	9801
Oregon - DHS	WA200001
South Carolina DHEC	61002
Washington DOE	C1203
Wisconsin DNR	998386840
Wyoming (EPA Region 8)	-

Client:

City of Portland

Project: Sample Matrix: Columbia Slough Stormwater

Water

Service Request No.:

K1013068

Date Received:

11/19/10

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

Sample Receipt

Two water samples were received for analysis at Columbia Analytical Services on 11/19/10. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Organochlorine Pesticides by EPA Method 8081A

Matrix Spike Recovery Exceptions:

Insufficient sample volume was received to perform a Matrix Spike/Matrix Spike Duplicate (MS/MSD). A Laboratory Control Sample/Duplicate Laboratory Control Sample (LCS/DLCS) was analyzed and reported in lieu of the MS/MSD for these samples.

Elevated Detection Limits:

The detection limit was elevated for all analytes in all samples. The chromatogram indicated the presence of non-target background components. The samples were diluted in order to achieve optimal resolution of the target analytes and internal standard. The results were flagged to indicate the matrix interference.

The detection limit was further elevated for a few analytes in all samples. The chromatogram indicated the presence of non-target background components. The matrix interference prevented adequate resolution of the target compounds at the normal limit. The results were flagged to indicate the matrix interference.

Sample Confirmation Notes:

The confirmation comparison criteria of 40% difference for a few analytes was exceeded in sample W10K004-01. The lower of the two values was reported because there was an apparent interference on the alternate column that produced the higher value.

No other anomalies associated with the analysis of these samples were observed.

Approved by

Date 12-137

SUBCONTRACT ORDER

City of Portland Water Pollution Control Lab W10K004

K1013068

				N I O I	2008			
SENDING LABORATORY:		RECEIVING LAB	RECEIVING LABORATORY: Columbia Analytical Services 1317 S. 13th Avenue Kelso, WA 98626 Phone: (360) 577-7222 Fax: (360) 636-1068 Project Manager:					
City of Portland Water Pollution Co 6543 N. Burlington Ave Portland, OR 97203 Phone: 503-823-5600 Fax: 503-823-5656 Invoice To: Charles Lytle	ontrol Lab	1317 S. 13th Av Kelso, WA 9862 Phone :(360) 57 Fax: (360) 636-						
WPCL Project Name Columbia Slough Stormwater		X Standa		ID REQUEST				
Analysis	Due	Expires	Laboratory ID	Comments				
Sample ID: W10K004-01	Water S	Sampled:11/17/10 13:56			<i>,</i>			
Out-Pesticides Chlor LL (CAS) Containers Supplied: G amber 1L (A)	12/03/10 17:00	11/24/10 13:56						
Sample ID: W10K004-02	Water S	Sampled:11/17/10 13:51			· <u> </u>			
Out-Pesticides Chlor LL (CAS) Containers Supplied: G amber 1L (A)	12/03/10 17:00	11/24/10 13:51			· · · · · · · · · · · · · · · · · · ·			
		/						
		Allifit		11-1910	10.40			
Released By CAS Released By	Date 1410 1215 Date	Received By Null Receive By	0AS	Date //- / 9 · 10 Date	12:16			

Columbia Analytical Services, Inc. PC Cooler Receipt and Preservation Form Client / Project: City of Pottland Service Request K10 Opened: 11-19-10 Received: / By Fed Ex UPS DHLCourier Hand Delivered Samples were received via? Other Samples were received in: (circle) Box Envelope NA 2. Cooler NA Were custody seals on coolers? N If yes, how many and where? 3. Y Y If present, were custody seals intact? N If present, were they signed and dated? N Cooler/COC Cooler Temp Thermometer **Tracking Number** NA Temp °C Packing material used. Inserts Baggies Bubble Wrap Gel Packs Wet Ice Sleeves Other 7. Were custody papers properly filled out (ink, signed, etc.)? N Did all bottles arrive in good condition (unbroken)? Indicate in the table below. 9. NA N Were all sample labels complete (i.e analysis, preservation, etc.)? 10. NA N Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. N Were appropriate bottles/containers and volumes received for the tests indicated? N Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below NA N Were VOA vials received without headspace? Indicate in the table below. Y NA N 15. Was C12/Res negative? NA N Sample ID on Bottle Sample ID on COC Identified by: **Bottle Count** Out of Head-Volume Reagent Lot Sample ID **Bottle Type** Temp space Broke added Number Initials Time Notes, Discrepancies, & Resolutions:

Analytical Results

Client:

Portland, City of

Project:

Columbia Slough Stormwater/W10K004

Sample Matrix:

Service Request: K1013068

Date Collected: 11/17/2010 **Date Received:** 11/19/2010

Organochlorine Pesticides

Sample Name:

W10K004-01

Lab Code:

K1013068-001

Extraction Method: Analysis Method:

EPA 3535A 8081A

Units: ng/L Basis: NA

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL.	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND U	2.5	1.1	5	11/24/10	12/03/10	KWG1013071	
beta-BHC	ND U	2.5	2.1	5	11/24/10	12/03/10	KWG1013071	
gamma-BHC (Lindane)	ND U	2.5	2.4	5	11/24/10	12/03/10	KWG1013071	
delta-BHC	ND Ui	3.1	3.1	5	11/24/10	12/03/10	KWG1013071	
Heptachlor	ND U	2.5	0.90	5	11/24/10	12/03/10	KWG1013071	
Aldrin	ND Ui	3.9	3.9	5	11/24/10	12/03/10	KWG1013071	
Heptachlor Epoxide	ND U	2.5	1.1	5	11/24/10	12/03/10	KWG1013071	
gamma-Chlordane†	ND U	2.5	1.6	5	11/24/10	12/03/10	KWG1013071	
Endosulfan I	ND U	2.5	1.3	5	11/24/10	12/03/10	KWG1013071	
alpha-Chlordane	ND U	2.5	1.4	5	11/24/10	12/03/10	KWG1013071	
Dieldrin	ND Ui	2.6	2.6	5	11/24/10	12/03/10	KWG1013071	
4,4'-DDE	4.5 D	2.5	0.95	5	11/24/10	12/03/10	KWG1013071	
Endrin	ND U	2.5	2.5	5	11/24/10	12/03/10	KWG1013071	
Endosulfan II	ND Ui	2.5	2.5	5	11/24/10	12/03/10	KWG1013071	
4,4'-DDD	16 PD	2.5	1.1	5	11/24/10	12/03/10	KWG1013071	
Endrin Aldehyde	ND U	2.5	1.1	5	11/24/10	12/03/10	KWG1013071	
Endosulfan Sulfate	5.7 PD	2.5	1.4	5	11/24/10	12/03/10	KWG1013071	
4,4'-DDT	10 PD	2.5	0.85	5	11/24/10	12/03/10	KWG1013071	
Endrin Ketone	ND U	2.5	1.6	5	11/24/10	12/03/10	KWG1013071	
Methoxychlor	ND U	2.5	2.2	5	11/24/10	12/03/10	KWG1013071	
Toxaphene	ND Ui	360	360	5	11/24/10	12/03/10	KWG1013071	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	76	20-102	12/03/10	Acceptable	,
Decachlorobiphenyl	78	35-128	12/03/10	Acceptable	

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 12/09/2010 15:34:29

 $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w: \label{lem:limit} pt \label{lem:limit} We w: \label{lem:limit} wi \label{lem:limit} We w: \label{lem:limit} pt \label{limit} We w: \label{lem:limit} pt \label{lem:limit} We w: \label{limit} pt \label{lem:limit} We w: \label{lem:limit} pt \label{lem:limit} pt \label{lem:limit} pt \label{lem:limit} pt \label{le$

Merged

Form 1A - Organic

SuperSet Reference:

Page 1 of 1 RR123168

8

Analytical Results

Client:

Portland, City of

Project:

Columbia Slough Stormwater/W10K004

Sample Matrix:

Water

Service Request: K1013068

Date Collected: 11/17/2010

Date Received: 11/19/2010

Organochlorine Pesticides

Sample Name:

W10K004-02

Lab Code:

K1013068-002

Extraction Method: Analysis Method:

EPA 3535A

Units: ng/L Basis: NA

Level: Low

8081A

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
alpha-BHC	ND U	2.5	1.1	5	11/24/10	12/03/10	KWG1013071	
beta-BHC	ND U	2.5	2.1	5	11/24/10	12/03/10	KWG1013071	
gamma-BHC (Lindane)	ND U	2.5	2.4	5	11/24/10	12/03/10	KWG1013071	
delta-BHC	ND Ui	2.9	2,9	5	11/24/10	12/03/10	KWG1013071	
Heptachlor	ND Ui	2.5	2.5	5	11/24/10	12/03/10	KWG1013071	
Aldrin	5.5 D	2.5	1.7	5	11/24/10	12/03/10	KWG1013071	
Heptachlor Epoxide	ND U	2.5	1.1	5	11/24/10	12/03/10	KWG1013071	
gamma-Chlordane†	ND U	2.5	1.6	5	11/24/10	12/03/10	KWG1013071	
Endosulfan I	ND U	2.5	1.3	5	11/24/10	12/03/10	KWG1013071	
alpha-Chlordane	ND U	2,5	1.4	5	11/24/10	12/03/10	KWG1013071	
Dieldrin	ND U	2.5	1.9	5	11/24/10	12/03/10	KWG1013071	
4,4'-DDE	1.4 JD	2,5	0.95	5	11/24/10	12/03/10	KWG1013071	
Endrin	ND U	2.5	2.5	5	11/24/10	12/03/10	KWG1013071	
Endosulfan II	ND U	2.5	1.8	5	11/24/10	12/03/10	KWG1013071	
4,4'-DDD	ND U	2.5	1.1	5	11/24/10	12/03/10	KWG1013071	
Endrin Aldehyde	ND U	2.5	1.1	5	11/24/10	12/03/10	KWG1013071	
Endosulfan Sulfate	ND U	2.5	1,4	5	11/24/10	12/03/10	KWG1013071	
4,4'-DDT	ND U	2.5	0.85	5	11/24/10	12/03/10	KWG1013071	
Endrin Ketone	ND U	2.5	1.6	5	11/24/10	12/03/10	KWG1013071	
Methoxychlor	ND U	2.5	2.2	5	11/24/10	12/03/10	KWG1013071	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene Decachlorobiphenyl	91 84	20-102 35-128	12/03/10 12/03/10	Acceptable Acceptable	

95

130

† Analyte Comments

Toxaphene

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

5

11/24/10

12/03/10

Comments:

Printed: 12/09/2010 15:34:32

u:\Stealth\Crystal.rpt\Form1mNew.rpt

ND Ui

Form 1A - Organic

SuperSet Reference:

Page 1 of 1

KWG1013071

Analytical Results

Client:

Portland, City of

Project:

Columbia Slough Stormwater/W10K004

Sample Matrix:

Water

Service Request: K1013068

Date Collected: NA

Date Received: NA

Organochlorine Pesticides

Sample Name:

Method Blank

Lab Code:

KWG1013071-5

Extraction Method: Analysis Method:

EPA 3535A 8081A

Units: ng/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
alpha-BHC	ND U	0.49	0.21	1	11/24/10	12/01/10	KWG1013071	
beta-BHC	ND U	0.49	0.41	1	11/24/10	12/01/10	KWG1013071	
gamma-BHC (Lindane)	ND U	0.49	0.47	1	11/24/10	12/01/10	KWG1013071	
delta-BHC	ND U	0.49	0.14	1	11/24/10	12/01/10	KWG1013071	
Heptachlor	ND U	0.49	0.18	1	11/24/10	12/01/10	KWG1013071	
Aldrin	ND U	0.49	0.33	1	11/24/10	12/01/10	KWG1013071	
Heptachlor Epoxide	ND U	0.49	0.21	1	11/24/10	12/01/10	KWG1013071	
gamma-Chlordane†	ND U	0.49	0.31	1	11/24/10	12/01/10	KWG1013071	
Endosulfan I	ND U	0.49	0.25	1	11/24/10	12/01/10	KWG1013071	
alpha-Chlordane	ND U	0.49	0.27	1	11/24/10	12/01/10	KWG1013071	
Dieldrin	ND U	0.49	0.37	1	11/24/10	12/01/10	KWG1013071	
4,4'-DDE	ND U	0.49	0.19	I	11/24/10	12/01/10	KWG1013071	
Endrin	ND U	0.49	0.49	. 1	11/24/10	12/01/10	KWG1013071	
Endosulfan II	ND U	0.49	0.35	1	11/24/10	12/01/10	KWG1013071	
4,4'-DDD	ND U .	0.49	0.21	1	11/24/10	12/01/10	KWG1013071	
Endrin Aldehyde	ND U	0.49	0.21	1	11/24/10	12/01/10	KWG1013071	
Endosulfan Sulfate	ND U	0.49	0.28	1	11/24/10	12/01/10	KWG1013071	
4,4'-DDT	ND U	0.49	0.17	1	11/24/10	12/01/10	KWG1013071	
Endrin Ketone	ND U	0.49	0.32	1	11/24/10	12/01/10	KWG1013071	
Methoxychlor	ND U	0.49	0.44	1	11/24/10	12/01/10	KWG1013071	
Toxaphene	ND U	25	17	1 .	11/24/10	12/01/10	KWG1013071	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	47	20-102	12/01/10	Acceptable	
Decachlorobiphenyl	56	35-128	12/01/10	Acceptable	

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 12/09/2010 15:34:35

u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic

SuperSet Reference: RR123168

Page 1 of 1

10

QA/QC Report

Client:

Portland, City of

Project:

Columbia Slough Stormwater/W10K004

Sample Matrix:

Surrogate Recovery Summary Organochlorine Pesticides

Extraction Method:

EPA 3535A

Analysis Method:

8081A

Service Request: K1013068

Units: PERCENT

Level: Low

Sample Name	Lab Code	<u>Sur1</u>	Sur2
W10K004-01	K1013068-001	76 D	78 D
W10K004-02	K1013068-002	91 D	84 D
Method Blank	KWG1013071-5	47	56
Lab Control Sample	KWG1013071-1	47	58
Duplicate Lab Control Sample	KWG1013071-2	52	62

Surrogate Recovery Control Limits (%)

Sur1 = Tetrachloro-m-xylene 20-102 Sur2 = Decachlorobiphenyl 35-128

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 12/09/2010 15:34:39

SuperSet Reference: RR123168 1 of 1

Page

QA/QC Report

Client:

Portland, City of

Project: Sample Matrix: Columbia Slough Stormwater/W10K004

Water

Service Request: K1013068

Date Extracted: 11/24/2010 Date Analyzed: 12/01/2010

Lab Control Spike/Duplicate Lab Control Spike Summary Organochlorine Pesticides

Extraction Method: EPA 3535A Analysis Method:

8081A

Units: ng/L

Basis: NA

Level: Low

Extraction Lot: KWG1013071

Lab Control Sample

Duplicate Lab Control Sample

		VG1013071-1 Control Spik		KWG1013071-2 Duplicate Lab Control Spike			%Rec	RPD	
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
alpha-BHC	5.25	10.0	52	5.60	10.0	56	36-122	6	30
beta-BHC	5.46	10.0	55	5.58	10.0	56	42-125	2	30
gamma-BHC (Lindane)	5.44	10.0	54	5.80	10.0	58	44-117	6	30
delta-BHC	5.81	10.0	58	6.07	10.0	61	48-123	4	30
Heptachlor	5.83	10.0	58	6.31	10.0	63	40-115	8	30
Aldrin	4.56	10.0	46	4.87	10.0	49	10-102	7	30
Heptachlor Epoxide	5.37	10.0	54	5.68	10.0	57	49-109	6	30
gamma-Chlordane	5.19	10.0	52	5.51	10.0	55	47-113	6	30
Endosulfan I	5.08	10.0	51	5.40	10.0	54	35-115	6	30
alpha-Chlordane	5.30	10.0	53	5.58	10.0	56	45-115	5	30
Dieldrin	5,38	10.0	54	5.83	10.0	58	50-115	8	30
4,4'-DDE	5,44	10.0	54	5.79	10.0	58	41-116	6	30
Endrin	5.27	10.0	53	5.60	10.0	56	48-126	6	30
Endosulfan II	4.73	10.0	47	4.91	10.0	49	28-128	4 .	- 30
4,4'-DDD	5.96	10.0	60	6.19	10.0	62	33-132	4	30
Endrin Aldehyde	4.15	10.0	42	4.31	10.0	43	27-104	4	30
Endosulfan Sulfate	4.97	10.0	50	5.15	10.0	52	38-118	4	30
4,4'-DDT	5.25	10.0	5 3	5.68	10.0	57	42-143	8	30
Endrin Ketone	5.48	10.0	55	5.61	10.0	56	30-124	2	30
Methoxychlor	5.04	10.0	50	5.35	10.0	54	43-143	6	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 12/09/2010 15:34:42 u:\Stealth\Crystal.rpt\Form3DLC.rpt

Form 3C - Organic

Page

1 of 1

DATA QUALIFIERS

- U The analyte was not detected at or above the reported result.
- J The analyte was positively identified. The associated numerical result is an estimate.
- EXP The result is equal to the number before EXP times 10 to the power of the number after EXP. As an example 3EXP6 equals 3 x 10°.
- REJ The data are unusable for all purposes.
- N There is evidence the analyte is present in this sample.
- NJ There is evidence that the analyte is present. The associated numerical result is an estimate.
- UJ The analyte was not detected at or above the reported estimated result. The associated numerical value is an estimate of the quantitation limit of the analyte in this sample.
- NAF Not analyzed for.
- NAR No analytical result.
- * The analyte was present in the sample. (Visual aid to locate detected compounds on the report sheet.

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTK0717-01 (W10K004-1) 10143922001 P101215B_11

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
145				ND		0.498
146				ND		0.498
147	147/149	35.630	1.27	2.30		0.996
148				ND		0.498
149	147/149	35.630	1.27	(2.30)		0.996
150				ND		0.498
151	135/151	34.675	1.24	(1.12)		0.996
152				` NĎ		0.498
153	153/168	38.733	1.25	1.94		0.996
154				ND		0.498
155				ND		0.498
156	156/157			ND		0.996
157	156/157			ND		0.996
158				ND		0.498
159				ND		0.498
160				ND		0.498
161				ND		0.498
162				ND		0.498
163	129/138/163	39.973	1.24	(2.54)		1.49
164				ND		0.498
165				ND		0.498
166	128/166			ND		0.996
167				ND		0.498
168	153/168	38.733	1.25	(1.94)		0.996
169				ND		0.498
170		46.798	1.05	0.987		0.498
171	171/173			ND		0.996
172		pain makaba		ND		0.498
173	171/173			ND		0.996
174		42.187	1.06	1.17		0.498
175				ND		0.498
176			4.04	ND 0.007		0.498
177		42.623	1.01	0.687		0.498
178		07.050	4.44	ND 0.530		0.498
179	4004400	37.659	1.11	0.530		0.498
180	180/193	45.541	1.04	2.28		0.996 0.498
181				ND ND		0.498
182	402/405			ND		0.498 0.996
183	183/185			ND ND		0.498
184	400/405			ND ND		0.496
185	183/185			ND ND	***	0.498
186		41.348	1.04			0.498
187 188			1.04	1.37 ND		0.498
100				ND ND		0.498
189				ND ND		0.498
190				ND ND	**-	0.498
191						0.498
192				ND		0.490

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits RT = Retention Time

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTK0717-01 (W10K004-1) 10143922001

P101215B_11

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
193	180/193	45.541	1.04	(2.28)		0.996
194				` NĎ		0.747
195				ND		0.747
196				ND		0.747
197	197/200			ND	***	1.49
198	198/199			ND		1.49
199	198/199			ND		1.49
200	197/200			ND		1.49
201				ND		0.747
202				ND		0.747
203				ND		0.747
204				ND		0.747
205				ND		0.747
206				ND		0.747
207				ND		0.747
208				ND		0.747
209				ND		0.747

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl **Sample Analysis Results**

Client Sample ID Lab Sample ID Filename

PTK0717-01 (W10K004-1) 10143922001 P101215B_11

Congener Group	Concentration ng/L	
Total Monochloro Biphenyls	ND	
Total Dichloro Biphenyls	ND	
Total Trichloro Biphenyls	ND	
Total Tetrachloro Biphenyls	0.561	
Total Pentachloro Biphenyls	3.22	
Total Hexachloro Biphenyls	9.32	
Total Heptachloro Biphenyls	7.02	
Total Octachloro Biphenyls	· ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	20.1	

ND = Not Detected

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America

Client's Sample ID Lab Sample ID

PTK0717-02 (W10K004-2)

Filename

10143922002 P101215B_10

Injected By **Total Amount Extracted** % Moisture

BAL 976 mL NA

Water Matrix Dilution NA

11/17/2010 13:51

Dry Weight Extracted ICAL ID

CCal Filename(s)

Method Blank ID

NA P101215B04 P101215B 03 **BLANK-27245** Collected Received 11/23/2010 10:52 Extracted Analyzed

12/13/2010 15:45 12/16/2010 03:00

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	7.203	3.05	2.0	1.02	51
13C-4-MoCB	3	10.258	3.16	2.0	1.14	57
13C-2,2'-DiCB	4	10.594	1.64	2.0	0.818	41
13C-4,4'-DICB	15	18.405	1.63	2.0	1.21	60
13C-2,2',6-TrCB	19	14.835	1.04	2.0	0.959	48
13C-3,4,4'-TrCB	37	26.558	1.05	2.0	1.71	85
13C-2,2',6,6'-TeCB	54	18.745	0.81	2.0	1.40	70
13C-3,4,4',5-TeCB	81	33.785	0.81	2.0	1.52	76
13C-3,3',4,4'-TeCB	77	34.355	0.80	2.0	1.61	81
13C-2,2',4,6,6'-PeCB	104	25.200	1.58	2.0	1.25	62
13C-2,3,3',4,4'-PeCB	105	37.944	1.57	2.0	1.59	80
13C-2,3,4,4',5-PeCB	114	37.290	1.57	2.0	1.58	79
13C-2,3',4,4',5-PeCB	118	36.770	1.60	2.0	1.59	79
13C-2,3',4,4',5'-PeCB	123	36.435	1.55	2.0	1.63	82
13C-3,3',4,4',5-PeCB	126	41.079	1.60	2.0	1.55	78
13C-2,2',4,4',6,6'-HxCB	155	31.388	1.27	2.0	1.29	65
13C-HxCB (156/157)	156/157	44.114	1.29	4.0	3.00	75
13C-2,3',4,4',5,5'-HxĆB	167	42.974	1.25	2.0	1.52	76
13C-3,3',4,4',5,5'-HxCB	169	47.384	1.27	2.0	1.39	70
13C-2,2',3,4',5,6,6'-HpCB	188	37.307	1.05	2.0	1.64	82
13C-2,3,3',4,4',5,5'-HpCB	189	49.915	1.05	2.0	1.66	83
13C-2.2'.3.3'.5.5'.6.6'-OcCB	202	42.706	0.89	2.0	1.64	82
13C-2,3,3',4,4',5,5',6-OcCB	205	52.523	0.90	2.0	1.56	78
13C-2,2',3,3',4,4',5,5',6-NoCB	206	54.441	0.80	2.0	1.57	79
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	49.420	0.80	2.0	1.57	78
13CDeCB	209	56.424	0.69	2.0	1.32	66
Cleanup Standards				4*		
13C-2,4,4'-TrCB	28	22.048	1.09	2.0	1.83	92
13C-2,3,3',5,5'-PeCB	111	34,439	1.58	2.0	1.48	74
13C-2,2',3,3',5,5',6-HpCB	178	40.392	1.03	2.0	1.40	70
Recovery Standards	_					
13C-2,5-DiCB	9	13.361	1.62	2.0	NA	NA NA
13C-2,2',5,5'-TeCB	52	24.177	0.80	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	31.639	1.63	2.0	NA	NA (
13C-2,2',3,4,4',5'-HxCB	138	39.922	1.25	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	52.049	0.90	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion X = Outside QC Limits

RT = Retention Time

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTK0717-02 (W10K004-2) 10143922002 P101215B 10

	-	_		Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/L	ng/L	ng/L
1				ND		0.256
				ND		0.256
$\bar{3}$				ND		0.256
4				ND		0.256
5				ND		0.256
2 3 4 5				ND		0.256
7				ND		0.256
8		·		ND		0.256
9				ND		0.256
10				ND		0.256
11				ND		1.54
12	12/13			ND		0.513
13	12/13			ND		0.513
14				ND		0.256
15				ND		0.256
16				ND		0.256
17				ND		0.256
18	18/30			ND		0.513
19				ND		0.256
20	20/28			ND		0.513
21	21/33	****		ND		0.513
22				ND		0.256
23				ND .		0.256
24				ND		0.256
25				ND		0.256
26	26/29			ND		0.513
27				ND		0.256
28	20/28			ND		0.513
29	26/29			ND		0.513
30	18/30			ND	-	0.513
31				ND		0.256
32				ND		0.256
33	21/33			ND		0.513
34				ND		0.256
35	•	'		ND		0.256
36		*		ND		0.256
37				ND		0.256
38				ND		0.256
39				ND		0.256
40	40/41/71			ND		1.54
41	40/41/71			ND		1.54
42	40/70			ND		0.513
43	43/73			ND		1.03
44	44/47/65			ND		1.54
45	45/51		:	ND		1.03
46	44147167			ND		0.513
47	44/47/65			ND		1.54
48				ND		0.513

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTK0717-02 (W10K004-2) 10143922002

P101215B_10

49 49/69 ND 1.03 50 50/53 ND 1.03 52 ND 1.03 52 ND 1.03 53 50/53 ND 1.03 54 ND 0.513 55 ND 0.513 56 ND 0.513 57 ND 0.513 59 59/62/75 ND 0.513 59 59/62/75 ND 0.513 61 61/70/74/76 ND 0.513 62 59/62/75 ND 0.513 64 ND 0.513 63 <	IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L.
50 50/53	49	49/69			ND		1.03
51 45/51							1.03
52	51	45/51					
53	52						
54		50/53					1.03
55							
56							
57	56						0.513
58	57						0.513
59 59/62/75				***			
60		59/62/75				·	
61 61/70/74/76		00/02//0					
62 59/62/75		61/70/74/76					
63 64 64 67 68 68 69 69 69 69 69 60 61/70/74/76 61/70/							
64 65 64 67 68 68 69 69 69 69 69 69 69 69 60 60 60 60 60 60 60 60 60 60 60 60 60		00/02/10					
65							
66 67 67 68 68 69 49/69		11/17/65					
67 68 68 69 49/69		44/47/03					
68							
69							0.010
70 61/70/74/76 ND 2.05 71 40/41/71 ND 1.54 72 ND 0.513 73 43/73 ND 1.03 74 61/70/74/76 ND 2.05 75 59/62/75 ND 1.54 76 61/70/74/76 ND 1.54 76 61/70/74/76 ND 0.513 78 ND 0.513 79 ND 0.513 80 ND 0.513 81 ND 0.513 81 ND 0.513 82 ND 0.513 83 ND 0.513 84 ND 0.513 85 85/116/117 ND 0.513 86 86/87/97/108/119/125 ND 0.513 87 86 86/87/97/108/119/125 ND 1.54 88 88/91 ND 1.03 89 90 90/101/113 ND 1.03 90 90/101/113 ND 1.03 91 88/91 ND 1.03 92 ND 1.03 93 93/98/100/102 ND 0.513 94 95 ND 0.513 95 93/98/100/102 ND 0.513 96 93/98/100/102 ND 0.513 97 90 93/98/100/102 ND 0.513 98 93 93/98/100/102 ND 0.513 99 93/98/100/102 ND 0.513 90 90/101/113 ND 0.513 91 0.513		49/60					
71							
72							
73		40/41//1					
74 61/70/74/76 ND 2.05 75 59/62/75 ND 1.54 76 61/70/74/76 ND 2.05 77 ND 0.513 78 ND 0.513 79 ND 0.513 80 ND 0.513 81 ND 0.513 82 ND 0.513 83 ND 0.513 84 ND 0.513 85 85/116/117 ND 0.513 86 86/87/97/108/119/125 ND 1.03 87 86/87/97/108/119/125 ND <t< td=""><td></td><td>42/72</td><td></td><td></td><td></td><td></td><td></td></t<>		42/72					
75 59/62/75							
76 61/70/74/76 ND 0.513 77 ND 0.513 78 ND 0.513 79 ND 0.513 80 ND 0.513 81 ND 0.513 82 ND 0.513 83 ND 0.513 84 ND 0.513 85 85/116/117 ND 0.513 86 86/87/97/108/119/125 ND 3.08 87 86/86/79/108/119/125 ND 3.08 88 88/91 ND 1.03 90 90/101/							2.00
77 ND 0.513 78 ND 0.513 79 ND 0.513 80 ND 0.513 81 ND 0.513 82 ND 0.513 83 ND 0.513 84 ND 0.513 85 85/116/117 ND 0.513 86 86/87/97/108/119/125 ND 3.08 87 86/87/97/108/119/125 ND 3.08 88 88/91 ND 3.08 89 ND 1.03 90 90/101/113 ND							
78 79		01/70/74/70					
79 80 80							
80 ND 0.513 81 ND 0.513 82 ND 0.513 83 ND 0.513 84 ND 0.513 85 85/116/117 ND 0.513 86 86/87/97/108/119/125 ND 3.08 87 86/87/97/108/119/125 ND 3.08 88 88/91 ND 3.08 89 ND 1.03 89 ND 0.513 90 90/101/113 ND 1.04 91 88/91 ND 1.03 92 ND 0.513 93 93/98/100/102 ND <							
81	79						
82 ND 0.513 83 ND 0.513 84 ND 0.513 85 85/116/117 ND 0.513 86 86/87/97/108/119/125 ND 3.08 87 86/87/97/108/119/125 ND 3.08 88 88/91 ND 1.03 89 ND 0.513 90 90/101/113 ND 0.513 91 88/91 ND 1.03 92 ND 0.513 93 93/98/100/102 ND 0.513 95 ND 0.513 95 ND 0.513							
83 84							
84 ND 0.513 85 85/116/117 ND 1.54 86 86/87/97/108/119/125 ND 3.08 87 86/87/97/108/119/125 ND 3.08 88 88/91 ND 1.03 89 ND 0.513 90 90/101/113 ND 1.54 91 88/91 ND 1.03 92 ND 1.03 92 93/98/100/102 ND 0.513 93 93/98/100/102 ND 0.513 95 ND 0.513							
85 85/116/117 ND 1.54 86 86/87/97/108/119/125 ND 3.08 87 86/87/97/108/119/125 ND 3.08 88 88/91 ND 1.03 89 ND 0.513 90 90/101/113 ND 1.54 91 88/91 ND 1.03 92 93/98/100/102 ND 0.513 93 93/98/100/102 ND 0.513 94 ND 0.513 95 ND 0.513							
86 86/87/97/108/119/125 ND 3.08 87 86/87/97/108/119/125 ND 3.08 88 88/91 ND 1.03 89 ND 0.513 90 90/101/113 ND 1.54 91 88/91 ND 1.03 92 ND 0.513 93 93/98/100/102 ND 2.05 94 ND 0.513 95 ND 0.513		0514401447					
87 86/87/97/108/119/125 ND 3.08 88 88/91 ND 1.03 89 ND 0.513 90 90/101/113 ND 1.54 91 88/91 ND 1.03 92 ND 0.513 93 93/98/100/102 ND 2.05 94 ND 0.513 95 ND 0.513	85	85/110/11/					1.54
88 88/91 ND 1.03 89 ND 0.513 90 90/101/113 ND 1.54 91 88/91 ND 1.03 92 ND 0.513 93 93/98/100/102 ND 2.05 94 ND 0.513 95 ND 0.513		86/87/97/108/119/125					
89 ND 0.513 90 90/101/113 ND 1.54 91 88/91 ND 1.03 92 ND 0.513 93 93/98/100/102 ND 2.05 94 ND 0.513 95 ND 0.513							
90 90/101/113 ND 1.54 91 88/91 ND 1.03 92 ND 0.513 93 93/98/100/102 ND 2.05 94 ND 0.513 95 ND 0.513		88/91				-	
91 88/91 ND 1.03 92 ND 0.513 93 93/98/100/102 ND 2.05 94 ND 0.513 95 ND 0.513		00/404/440					
92 ND 0.513 93 93/98/100/102 ND 2.05 94 ND 0.513 95 ND 0.513							
93 93/98/100/102 ND 2.05 94 ND 0.513 95 ND 0.513		88/ 9 1					1.03
94 ND 0.513 95 ND 0.513	92	00/00/400/400					
95 ND 0.513		93/98/100/102					
							0.513
96 ND 0.513							0.513
	96				ND		0.513

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTK0717-02 (W10K004-2) 10143922002

P101215B 10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
97	86/87/97/108/119/125			· ND		3.08
98	93/98/100/102			ND		2.05
99				ND		0.513
100	93/98/100/102			ND		2.05
101	90/101/113			ND		1.54
102	93/98/100/102			ND		2.05
103	33.33. 133. 132			ND	, ·	0.513
104				ND		0.513
105				ND		0.513
106				ND		0.513
107	107/124			ND		1.03
108	86/87/97/108/119/125			ND		3.08
109	00/01/01/100/110/120		•	ND		0.513
110	110/115			ND		1.03
111	110/110			ND		0.513
112				ND		0.513
113	90/101/113			ND		1.54
114	90/10//13			ND		0.513
115	110/115			ND ND		1.03
116	85/116/117			ND ND		1.54
				ND ND		
117	85/116/117					1.54 0.513
118	00/07/07/400/440/405			ND		0.513
119	86/87/97/108/119/125			ND		3.08
120				ND		0.513
121		***		ND		0.513
122				ND		0.513
123				ND		0.513
124	107/124	***		ND		1.03
125	86/87/97/108/119/125			ND		3.08
126				ND		0.513
127		****		ND		0.513
128	128/166			ND		1.03
129	129/138/163			ND		1.54
130	•			ND		0.513
131				ND		0.513
132				ND		0.513
133				ND		0.513
134	134/143			. ND		1.03
135	135/151			ND		1.03
136				ND		0.513
137				ND		0.513
138	129/138/163			ND		1.54
139	139/140			ND		1.03
140	139/140			. ND		1.03
141				· ND		0.513
142		***	***	ND		0.513
143	134/143			ND		1.03
144	· · · · ·			ND		0.513

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTK0717-02 (W10K004-2) 10143922002 P101215B_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
145				ND		0.513
146				ND		0.513
147	147/149			ND		1.03
148				ND		0.513
149	147/149			ND		1.03
150				ND	***	0.513
151	135/151			ND		1.03
152				ND		0.513
153	153/168			ND		1.03
154				ND		0.513
155				ND		0.513
156	156/157			ND		1.03
157	156/157			ND		1.03
158				ND		0.513
159				ND		0.513
160				ND		0.513
161				ND -		0.513
162				ND		0.513
163	129/138/163			ND		1.54
164				ND		0.513
165				ND		0.513
166	128/166			ND		1.03
167	•			ND		0.513
168	153/168			ND		1.03
169				ND		0.513
170				ND		0.513
171	171/173			ND		1.03
172				ND		0.513
173	171/173			ND		1.03
174				ND		0.513
175				ND		0.513
176				ND		0.513
177				ND		0.513
178				ND		0.513
179	-		'	ND		0.513
180	180/193			ND		1.03
181				ND		0.513
182				ND		0.513
183	183/185			ND		1.03
184				ND		0.513
185	183/185			ND		1.03
186				ND		0.513
187				ND		0.513
188				ND		0.513
189				ND		0.513
190				ND		0.513
191				ND		0.513
192				ND		0.513

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time 1 = Interference

ng's = Nanograms

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTK0717-02 (W10K004-2) 10143922002 P101215B 10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
193	180/193	<u></u>		ND		1.03
194	•			ND		0.769
195				ND		0.769
196				ND		0.769
197	197/200			ND		1.54
198	198/199			ND		1.54
199	198/199			ND		1.54
200	197/200			ND		1.54
201				. ND		0.769
202				ND		0.769
203				ND		0.769
204				ND		0.769
205				ND		0.769
206				ND		0.769
207				ND		0.769
208				· ND		0.769
209				ND		0.769

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No.....10143922_1668A

ACE Analytical Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTK0717-02 (W10K004-2) 10143922002

P101215B_10

 Congener Group	Concentration ng/L	
Total Monochloro Biphenyls	ND	
Total Dichloro Biphenyls	ND	
Total Trichloro Biphenyls	ND	
Total Tetrachloro Biphenyls	ND	
Total Pentachloro Biphenyls	ND	
Total Hexachloro Biphenyls	ND	
Total Heptachloro Biphenyls	ND ·	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	ND	

ND = Not Detected